Posted in python

My experience with Voilà and Streamlit for building data dashboards

Data engineer vs. Data scientist- What does your company need?
Differences between data engineer vs scientist. Source

The role of data scientist is clear: To analyse the data, plot visualisation graphs and consolidate the findings into a report. However, with greater interest in deeper understanding of big data and urgent need for more novel tools to gain insights from biological datasets, there is a growing interest in employing data engineers. Their roles and responsibilities can include app development, constructing pipelines, data testing and maintaining architectures such as databases and large-scale processing systems. This is unlike data scientists, who are mostly involved in data cleaning, data visualisation and big data organisation.

One aspect is to implement strategies to improve reliability, efficiency and quality. To ensure consistency, implementing data dashboards is important. This will require moving out of the comfort zone of just reporting data within Jupyter Notebooks. To build data dashboards, Javascript is often used. However, recently, there are packages that can be implemented in Python (which means that you don’t have to learn another language). These packages include Voilà, Panel, Dash and Streamlit. On my end, I have tried Voilà and Streamlit as they are both easier to implement as compared to Panel and Dash. This blog will hence compare my experience with Voilà and Streamlit.

The installation of Voilà, and the associated templates is relatively straight-forward. You just need to execute these codes to download the packages:

pip install voila
pip install voila-gridstack
pip install voila-vuetify

Once the packages are installed in your environment, you should be able to see the extensions in the Jupyter notebook (indicated in arrow). Clicking on them will execute the output files from python codes.

With the gridstack or the vuetify templates, you can further manipulate and reorder your output files to display your graphs in your dashboard. The dashboard can then be deployed using Heroku or deposited in GitHub for deployment in

As you can imagine, if you enjoy working within Jupyter Notebooks, Voilà can be a simple and convenient tool to make data dashboards. You can also make the dashboard interactive by using iPywidgets, Plotly, Altair or Bokeh. However, a severe limitation is that it is difficult to do multi-pages. This can be an issue if you are developing multiple dashboards, or multiple graphs from different studies.

My delay in this blog post is because I have spent much of my time in finding alternatives for building multi-pages. This is where I learnt about Streamlit. I was very impressed at how we can use simple python codes to develop beautiful dashboards, and I was able to build a simple webpage/dashboard with a few hours of reading online tutorials. With more readings, I was even able to make some simple apps! Using Streamlit is as simple as:

  1. Open terminal window
  2. Install Streamlit
  3. Create a .py file using text editors such as sublime text (my preferred choice), atom or visual code
  4. And then execute file by typing the code in terminal: streamlit run

You can install streamlit by using:

pip install streamlit

In addition to these cool features, Streamlit is able to do multi-pages, which means you can create multiple data dashboards or multiple apps within a single website. Finally, the deployment is also relatively simple with Streamlit teams, which is attractive. However, if you prefer to work within Jupyter Notebooks, this may not be a great option for you as the commands are mostly executed via terminal or in .py files. The other limitation which I haven’t found a solution is related to security, where I do not know how to configure in such a way that only allows registered users to use the website.

Overall, deciding on which platform to use will depend on your personal preferences and applications. I prefer Streamlit as it is more versatile and flexible, which may explain why it’s increasing popularity in these recent years!

Streamlit vs Dash vs Voilà vs Panel — Battle of The Python Dashboarding  Giants | by Stephen Kilcommins | DataDrivenInvestor

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s